
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 22: Distributed-File Systems

 Background
 Naming and Transparency
 Remote File Access
 Stateful versus Stateless Service
 File Replication
 Example Systems

Background

 Distributed file system (DFS) – a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources.

 A DFS manages set of dispersed storage devices

 Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces.

 There is usually a correspondence between constituent
storage spaces and sets of files.

DFS Structure

 Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown clients.

 Server – service software running on a single machine.

 Client – process that can invoke a service using a set of
operations that forms its client interface.

 A client interface for a file service is formed by a set of primitive
file operations (create, delete, read, write).

 Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files.

Naming and Transparency

 Naming – mapping between logical and physical objects.

 Multilevel mapping – abstraction of a file that hides the
details of how and where on the disk the file is actually
stored.

 A transparent DFS hides the location where in the
network the file is stored.

 For a file being replicated in several sites, the mapping
returns a set of the locations of this file’s replicas; both
the existence of multiple copies and their location are
hidden.

Naming Structures

 Location transparency – file name does not reveal the file’s
physical storage location.
 File name still denotes a specific, although hidden, set of physical

disk blocks.
 Convenient way to share data.
 Can expose correspondence between component units and

machines.

 Location independence – file name does not need to be
changed when the file’s physical storage location changes.
 Better file abstraction.
 Promotes sharing the storage space itself.
 Separates the naming hierarchy form the storage-devices

hierarchy.

Naming Schemes — Three Main Approaches

 Files named by combination of their host name and local
name; guarantees a unique systemwide name.

 Attach remote directories to local directories, giving the
appearance of a coherent directory tree; only previously
mounted remote directories can be accessed
transparently.

 Total integration of the component file systems.
 A single global name structure spans all the files in the

system.
 If a server is unavailable, some arbitrary set of directories

on different machines also becomes unavailable.

Remote File Access

 Reduce network traffic by retaining recently accessed
disk blocks in a cache, so that repeated accesses to the
same information can be handled locally.

 If needed data not already cached, a copy of data is brought
from the server to the user.

 Accesses are performed on the cached copy.
 Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in
different caches.

 Cache-consistency problem – keeping the cached copies
consistent with the master file.

Cache Location – Disk vs. Main Memory

 Advantages of disk caches
 More reliable.
 Cached data kept on disk are still there during recovery and

don’t need to be fetched again.

 Advantages of main-memory caches:
 Permit workstations to be diskless.
 Data can be accessed more quickly.
 Performance speedup in bigger memories.
 Server caches (used to speed up disk I/O) are in main

memory regardless of where user caches are located; using
main-memory caches on the user machine permits a single
caching mechanism for servers and users.

Cache Update Policy

 Write-through – write data through to disk as soon as they are
placed on any cache. Reliable, but poor performance.

 Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.
 Poor reliability; unwritten data will be lost whenever a user machine

crashes.
 Variation – scan cache at regular intervals and flush blocks that

have been modified since the last scan.
 Variation – write-on-close, writes data back to the server when the

file is closed. Best for files that are open for long periods and
frequently modified.

Consistency

 Is locally cached copy of the data consistent with the
master copy?

 Client-initiated approach
 Client initiates a validity check.
 Server checks whether the local data are consistent with the

master copy.

 Server-initiated approach
 Server records, for each client, the (parts of) files it caches.
 When server detects a potential inconsistency, it must react.

Comparing Caching and Remote Service

 In caching, many remote accesses handled efficiently by
the local cache; most remote accesses will be served as
fast as local ones.

 Servers are contracted only occasionally in caching
(rather than for each access).
 Reduces server load and network traffic.
 Enhances potential for scalability.

 Remote server method handles every remote access
across the network; penalty in network traffic, server load,
and performance.

 Total network overhead in transmitting big chunks of data
(caching) is lower than a series of responses to specific
requests (remote-service).

Caching and Remote Service (Cont.)

 Caching is superior in access patterns with infrequent
writes. With frequent writes, substantial overhead
incurred to overcome cache-consistency problem.

 Benefit from caching when execution carried out on
machines with either local disks or large main memories.

 Remote access on diskless, small-memory-capacity
machines should be done through remote-service
method.

 In caching, the lower intermachine interface is different
form the upper user interface.

 In remote-service, the intermachine interface mirrors the
local user-file-system interface.

Stateful File Service

 Mechanism.
 Client opens a file.
 Server fetches information about the file from its disk, stores

it in its memory, and gives the client a connection identifier
unique to the client and the open file.

 Identifier is used for subsequent accesses until the session
ends.

 Server must reclaim the main-memory space used by
clients who are no longer active.

 Increased performance.
 Fewer disk accesses.
 Stateful server knows if a file was opened for sequential

access and can thus read ahead the next blocks.

Stateless File Server

 Avoids state information by making each request self-
contained.

 Each request identifies the file and position in the file.

 No need to establish and terminate a connection by open
and close operations.

Distinctions Between Stateful & Stateless Service

 Failure Recovery.
 A stateful server loses all its volatile state in a crash.

Restore state by recovery protocol based on a dialog
with clients, or abort operations that were underway
when the crash occurred.

Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

 With stateless server, the effects of server failure sand
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without any
difficulty.

Distinctions (Cont.)

 Penalties for using the robust stateless service:
 longer request messages
 slower request processing
 additional constraints imposed on DFS design

 Some environments require stateful service.
 A server employing server-initiated cache validation cannot

provide stateless service, since it maintains a record of
which files are cached by which clients.

 UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a
file.

File Replication

 Replicas of the same file reside on failure-independent
machines.

 Improves availability and can shorten service time.
 Naming scheme maps a replicated file name to a

particular replica.
 Existence of replicas should be invisible to higher levels.
 Replicas must be distinguished from one another by

different lower-level names.
 Updates – replicas of a file denote the same logical entity,

and thus an update to any replica must be reflected on all
other replicas.

 Demand replication – reading a nonlocal replica causes it
to be cached locally, thereby generating a new
nonprimary replica.

Example System - ANDREW

 A distributed computing environment under development
since 1983 at Carnegie-Mellon University.

 Andrew is highly scalable; the system is targeted to span
over 5000 workstations.

 Andrew distinguishes between client machines
(workstations) and dedicated server machines. Servers
and clients run the 4.2BSD UNIX OS and are
interconnected by an internet of LANs.

ANDREW (Cont.)

 Clients are presented with a partitioned space of file
names: a local name space and a shared name space.

 Dedicated servers, called Vice, present the shared name
space to the clients as an homogeneous, identical, and
location transparent file hierarchy.

 The local name space is the root file system of a
workstation, from which the shared name space
descends.

 Workstations run the Virtue protocol to communicate with
Vice, and are required to have local disks where they
store their local name space.

 Servers collectively are responsible for the storage and
management of the shared name space.

ANDREW (Cont.)

 Clients and servers are structured in clusters
interconnected by a backbone LAN.

 A cluster consists of a collection of workstations and a
cluster server and is connected to the backbone by a
router.

 A key mechanism selected for remote file operations is
whole file caching. Opening a file causes it to be cached,
in its entirety, on the local disk.

ANDREW Shared Name Space

 Andrew’s volumes are small component units associated
with the files of a single client.

 A fid identifies a Vice file or directory. A fid is 96 bits long
and has three equal-length components:
 volume number
 vnode number – index into an array containing the inodes of

files in a single volume.
 uniquifier – allows reuse of vnode numbers, thereby keeping

certain data structures, compact.
 Fids are location transparent; therefore, file movements

from server to server do not invalidate cached directory
contents.

 Location information is kept on a volume basis, and the
information is replicated on each server.

ANDREW File Operations

 Andrew caches entire files form servers. A client
workstation interacts with Vice servers only during
opening and closing of files.

 Venus – caches files from Vice when they are opened,
and stores modified copies of files back when they are
closed.

 Reading and writing bytes of a file are done by the kernel
without Venus intervention on the cached copy.

 Venus caches contents of directories and symbolic links,
for path-name translation.

 Exceptions to the caching policy are modifications to
directories that are made directly on the server
responsibility for that directory.

ANDREW Implementation

 Client processes are interfaced to a UNIX kernel with the
usual set of system calls.

 Venus carries out path-name translation component by
component.

 The UNIX file system is used as a low-level storage
system for both servers and clients. The client cache is a
local directory on the workstation’s disk.

 Both Venus and server processes access UNIX files
directly by their inodes to avoid the expensive path name-
to-inode translation routine.

ANDREW Implementation (Cont.)

 Venus manages two separate caches:
 one for status
 one for data

 LRU algorithm used to keep each of them bounded in
size.

 The status cache is kept in virtual memory to allow rapid
servicing of stat (file status returning) system calls.

 The data cache is resident on the local disk, but the UNIX
I/O buffering mechanism does some caching of the disk
blocks in memory that are transparent to Venus.

