
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 22: Distributed-File Systems

 Background
 Naming and Transparency
 Remote File Access
 Stateful versus Stateless Service
 File Replication
 Example Systems

Background

 Distributed file system (DFS) – a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources.

 A DFS manages set of dispersed storage devices

 Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces.

 There is usually a correspondence between constituent
storage spaces and sets of files.

DFS Structure

 Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown clients.

 Server – service software running on a single machine.

 Client – process that can invoke a service using a set of
operations that forms its client interface.

 A client interface for a file service is formed by a set of primitive
file operations (create, delete, read, write).

 Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files.

Naming and Transparency

 Naming – mapping between logical and physical objects.

 Multilevel mapping – abstraction of a file that hides the
details of how and where on the disk the file is actually
stored.

 A transparent DFS hides the location where in the
network the file is stored.

 For a file being replicated in several sites, the mapping
returns a set of the locations of this file’s replicas; both
the existence of multiple copies and their location are
hidden.

Naming Structures

 Location transparency – file name does not reveal the file’s
physical storage location.
 File name still denotes a specific, although hidden, set of physical

disk blocks.
 Convenient way to share data.
 Can expose correspondence between component units and

machines.

 Location independence – file name does not need to be
changed when the file’s physical storage location changes.
 Better file abstraction.
 Promotes sharing the storage space itself.
 Separates the naming hierarchy form the storage-devices

hierarchy.

Naming Schemes — Three Main Approaches

 Files named by combination of their host name and local
name; guarantees a unique systemwide name.

 Attach remote directories to local directories, giving the
appearance of a coherent directory tree; only previously
mounted remote directories can be accessed
transparently.

 Total integration of the component file systems.
 A single global name structure spans all the files in the

system.
 If a server is unavailable, some arbitrary set of directories

on different machines also becomes unavailable.

Remote File Access

 Reduce network traffic by retaining recently accessed
disk blocks in a cache, so that repeated accesses to the
same information can be handled locally.

 If needed data not already cached, a copy of data is brought
from the server to the user.

 Accesses are performed on the cached copy.
 Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in
different caches.

 Cache-consistency problem – keeping the cached copies
consistent with the master file.

Cache Location – Disk vs. Main Memory

 Advantages of disk caches
 More reliable.
 Cached data kept on disk are still there during recovery and

don’t need to be fetched again.

 Advantages of main-memory caches:
 Permit workstations to be diskless.
 Data can be accessed more quickly.
 Performance speedup in bigger memories.
 Server caches (used to speed up disk I/O) are in main

memory regardless of where user caches are located; using
main-memory caches on the user machine permits a single
caching mechanism for servers and users.

Cache Update Policy

 Write-through – write data through to disk as soon as they are
placed on any cache. Reliable, but poor performance.

 Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.
 Poor reliability; unwritten data will be lost whenever a user machine

crashes.
 Variation – scan cache at regular intervals and flush blocks that

have been modified since the last scan.
 Variation – write-on-close, writes data back to the server when the

file is closed. Best for files that are open for long periods and
frequently modified.

Consistency

 Is locally cached copy of the data consistent with the
master copy?

 Client-initiated approach
 Client initiates a validity check.
 Server checks whether the local data are consistent with the

master copy.

 Server-initiated approach
 Server records, for each client, the (parts of) files it caches.
 When server detects a potential inconsistency, it must react.

Comparing Caching and Remote Service

 In caching, many remote accesses handled efficiently by
the local cache; most remote accesses will be served as
fast as local ones.

 Servers are contracted only occasionally in caching
(rather than for each access).
 Reduces server load and network traffic.
 Enhances potential for scalability.

 Remote server method handles every remote access
across the network; penalty in network traffic, server load,
and performance.

 Total network overhead in transmitting big chunks of data
(caching) is lower than a series of responses to specific
requests (remote-service).

Caching and Remote Service (Cont.)

 Caching is superior in access patterns with infrequent
writes. With frequent writes, substantial overhead
incurred to overcome cache-consistency problem.

 Benefit from caching when execution carried out on
machines with either local disks or large main memories.

 Remote access on diskless, small-memory-capacity
machines should be done through remote-service
method.

 In caching, the lower intermachine interface is different
form the upper user interface.

 In remote-service, the intermachine interface mirrors the
local user-file-system interface.

Stateful File Service

 Mechanism.
 Client opens a file.
 Server fetches information about the file from its disk, stores

it in its memory, and gives the client a connection identifier
unique to the client and the open file.

 Identifier is used for subsequent accesses until the session
ends.

 Server must reclaim the main-memory space used by
clients who are no longer active.

 Increased performance.
 Fewer disk accesses.
 Stateful server knows if a file was opened for sequential

access and can thus read ahead the next blocks.

Stateless File Server

 Avoids state information by making each request self-
contained.

 Each request identifies the file and position in the file.

 No need to establish and terminate a connection by open
and close operations.

Distinctions Between Stateful & Stateless Service

 Failure Recovery.
 A stateful server loses all its volatile state in a crash.

Restore state by recovery protocol based on a dialog
with clients, or abort operations that were underway
when the crash occurred.

Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

 With stateless server, the effects of server failure sand
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without any
difficulty.

Distinctions (Cont.)

 Penalties for using the robust stateless service:
 longer request messages
 slower request processing
 additional constraints imposed on DFS design

 Some environments require stateful service.
 A server employing server-initiated cache validation cannot

provide stateless service, since it maintains a record of
which files are cached by which clients.

 UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a
file.

File Replication

 Replicas of the same file reside on failure-independent
machines.

 Improves availability and can shorten service time.
 Naming scheme maps a replicated file name to a

particular replica.
 Existence of replicas should be invisible to higher levels.
 Replicas must be distinguished from one another by

different lower-level names.
 Updates – replicas of a file denote the same logical entity,

and thus an update to any replica must be reflected on all
other replicas.

 Demand replication – reading a nonlocal replica causes it
to be cached locally, thereby generating a new
nonprimary replica.

Example System - ANDREW

 A distributed computing environment under development
since 1983 at Carnegie-Mellon University.

 Andrew is highly scalable; the system is targeted to span
over 5000 workstations.

 Andrew distinguishes between client machines
(workstations) and dedicated server machines. Servers
and clients run the 4.2BSD UNIX OS and are
interconnected by an internet of LANs.

ANDREW (Cont.)

 Clients are presented with a partitioned space of file
names: a local name space and a shared name space.

 Dedicated servers, called Vice, present the shared name
space to the clients as an homogeneous, identical, and
location transparent file hierarchy.

 The local name space is the root file system of a
workstation, from which the shared name space
descends.

 Workstations run the Virtue protocol to communicate with
Vice, and are required to have local disks where they
store their local name space.

 Servers collectively are responsible for the storage and
management of the shared name space.

ANDREW (Cont.)

 Clients and servers are structured in clusters
interconnected by a backbone LAN.

 A cluster consists of a collection of workstations and a
cluster server and is connected to the backbone by a
router.

 A key mechanism selected for remote file operations is
whole file caching. Opening a file causes it to be cached,
in its entirety, on the local disk.

ANDREW Shared Name Space

 Andrew’s volumes are small component units associated
with the files of a single client.

 A fid identifies a Vice file or directory. A fid is 96 bits long
and has three equal-length components:
 volume number
 vnode number – index into an array containing the inodes of

files in a single volume.
 uniquifier – allows reuse of vnode numbers, thereby keeping

certain data structures, compact.
 Fids are location transparent; therefore, file movements

from server to server do not invalidate cached directory
contents.

 Location information is kept on a volume basis, and the
information is replicated on each server.

ANDREW File Operations

 Andrew caches entire files form servers. A client
workstation interacts with Vice servers only during
opening and closing of files.

 Venus – caches files from Vice when they are opened,
and stores modified copies of files back when they are
closed.

 Reading and writing bytes of a file are done by the kernel
without Venus intervention on the cached copy.

 Venus caches contents of directories and symbolic links,
for path-name translation.

 Exceptions to the caching policy are modifications to
directories that are made directly on the server
responsibility for that directory.

ANDREW Implementation

 Client processes are interfaced to a UNIX kernel with the
usual set of system calls.

 Venus carries out path-name translation component by
component.

 The UNIX file system is used as a low-level storage
system for both servers and clients. The client cache is a
local directory on the workstation’s disk.

 Both Venus and server processes access UNIX files
directly by their inodes to avoid the expensive path name-
to-inode translation routine.

ANDREW Implementation (Cont.)

 Venus manages two separate caches:
 one for status
 one for data

 LRU algorithm used to keep each of them bounded in
size.

 The status cache is kept in virtual memory to allow rapid
servicing of stat (file status returning) system calls.

 The data cache is resident on the local disk, but the UNIX
I/O buffering mechanism does some caching of the disk
blocks in memory that are transparent to Venus.

